Nickelacyclobutabenzole durch oxidative Addition von 7,7-Bis(trimethylsilyl)cyclopropabenzol an Nickel(0)-Komplexe

Carl Krüger, Klaudia Laakmann, Gerhard Schroth, Harald Schwager und Günther Wilke*

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr

Eingegangen am 4. August 1986

Die Synthese des 7,7-Bis(trimethylsilyl)cyclopropabenzols (2), ausgehend von Cyclopropabenzol (1), wird beschrieben. Die oxidative Addition von 2 an Tris(ethen)nickel(0) (3) in Gegenwart von chelatisierenden Aminliganden liefert unter Insertion der Nickelatome in eine der C – C-Einfachbindungen des Cyclopropabenzol-Dreiringes Nickelacyclobutabenzole des Typs 4. In einer Ligandenaustauschreaktion läßt sich das Tetramethylethylendiamin im Komplex 4a durch Phosphorliganden glatt unter Bildung von Nickelacyclobutabenzolen des Typs 5 verdrängen. – Von 4a wurde eine Röntgenstrukturanalyse ausgeführt.

Metallacyclen mit vier Ringgliedern kommt aufgrund strukturchemischer und bindungstheoretischer Fragen, aber auch wegen ihrer Bedeutung als Zwischenstufen der Olefin-Metathese¹¹ erhebliches Interesse zu. Kürzlich konnten wir zeigen, daß durch oxidative Addition von Cyclopropabenzol (1) an (1,5-Cyclooctadien)bis(trimethylphosphan)nickel(0) ein bis(methano)überbrücktes Nickela[12]annulen entsteht^{2,3)}.

Weitherhin gelang auf dem Wege der oxidativen Addition die Synthese sonst nur schwer zugänglicher und bislang nur in Ausnahmefällen beschriebener Metallacyclobutabenzole⁴⁾. Dies konnten wir am Beispiel der Umsetzung von 1 mit Nickelkomplexen^{3,5)} zeigen. In diesem Zusammenhang interessierte uns der Einfluß von raumerfüllenden Substituenten in 7-Position des Cyclopropabenzolgerüstes auf den Reaktionsablauf der Metallacyclenbildung. Als Derivat schien das 7,7-Bis(trimethylsilyl)cyclopropabenzol (2) geeignet, das durch Silylierung von 1 in glatter Reaktion erhalten werden konnte. Im folgenden berichten wir über die Synthese von trimethylsilylsubstituierten Nickelacyclobutabenzolen 4, welche im Vergleich zu den unsubstituierten Nikkelverbindungen eine beträchtlich erhöhte Stabilität aufweisen^{3,5)}.

7,7-Bis(trimethylsilyl)cyclopropabenzol (2)

Für das Cyclopropabenzol (1) wird eine relativ hohe Acidität gefunden – der pK_s -Wert liegt deutlich unter dem der Methylenprotonen des Cyclopropens und sogar unter dem von Toluol. Aus diesem Grund läßt sich 1 bei tiefen Temperaturen sehr leicht mittels *n*-Butyllithium metallieren. Das

Nickelacyclobutabenzene through Oxidative Addition of 7,7-Bis-(trimethylsilyl)cyclopropabenzene to Nickel(0) Complexes

The synthesis of 7,7-bis(trimethylsilyl)cyclopropabenzene (2) from cyclopropabenzene (1) is reported. The oxidative addition of 2 to tris(ethene)nickel(0) (3) in the presence of chelating ligands occurs with insertion of the nickel atom into the C-C-single bond of the cyclopropabenzene three-membered ring to give nickela-cyclobutabenzene derivatives 4. Ligand exchange of the tetramethylethylenediamine in 4a by phosphorus ligands occurs smoothly to give nickelacyclobutabenzene species 5. — An X-ray structure analysis of 4a was performed.

Benzocyclopropenyl-Anion reagiert mit Chlortrimethylsilan in 35% Ausbeute zum 7-(Trimethylsilyl)cyclopropabenzol⁶⁾.

Das 7,7-Bis(trimethylsilyl)cyclopropabenzol (2) wird auf analogem Wege durch zweimalige Metallierung mittels *n*-Butyllithium und Umsetzung mit Chlortrimethylsilan in einer "Ein-Topf-Reaktion" in 33proz. Ausbeute aus 1 erhalten (Gl. 1).

Die Struktur von 2 wird durch die spektroskopischen Daten bestätigt. Das UV-Spektrum von 2 ähnelt dem von 1, jedoch sind die Banden um etwa 20 nm zu höherer Wellenlänge verschoben. Im ¹H-NMR-Spektrum werden die aromatischen Protonen durch ein bei $\delta = 6.88$ zentriertes AA'BB'-System charakterisiert. Die Äquivalenz der Trimethylsilylgruppen ($\delta = -0.05$) läßt zumindest im Zeitmittel auf ein planares Cyclopropabenzol-Skelett schließen. Die ¹³C-NMR-Daten stehen ebenfalls in Einklang mit der vorgeschlagenen Struktur von 2.

Synthese

Die Umsetzung von Cyclopropabenzol 2 mit einem 1:1-Gemisch von Tris(ethen)nickel(0) (3)⁷⁾ und dem entsprechenden Chelatamin in Ether (Gl. 2) liefert unter Freisetzung von Ethen in Ausbeuten von 60-80% die Nickelacyclobutabenzole des Typs 4. Die Komplexe 4a - d entstehen im Zuge einer oxidativen Addition durch Insertion der Nickelatome in eine der C-C- σ -Bindungen des Dreiringes von 2.

Zur präparativen Darstellung werden die Reaktionskomponenten bei -78 °C unter gutem Rühren zusammengegeben und die Reaktionsmischung dann langsam ohne Rühren auf Raumtemperatur erwärmt. 4a und 4d kristallisieren aufgrund ihrer schlechten Löslichkeit schon bei ihrer Bildung beim Erwärmen spontan aus, während im Fall von 4b und 4c die Reaktionslösung zur Kristallisation wieder abgekühlt werden muß. Die bei Raumtemperatur stabilen, oxidationsempfindlichen Nickel(II)-Verbindungen 4a-d

Chem. Ber. 120, 471-475 (1987) © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1987 0009-2940/87/0404-0471 \$ 02.50/0

fallen ohne weiteres Umkristallisieren direkt aus der Mutterlauge analysenrein an.

TMEDA: Tetramethylethylendiamin; TEEDA: Tetraethylethylendiamin; PMDTA: Pentamethyldiethylentriamin; bipy: 2,2'-Bipyridyl; dcpe: 1,2-Bis(dicyclohexylphosphino)ethan; dppe: 1,2-Bis-(diphenylphosphino)ethan.

Nach Yamamoto⁸⁾ läßt sich 2,2'-Bipyridyl in glatter Reaktion mit Chelatphosphanen aus der Dimethylnickel(II)-Verbindung verdrängen. Diese Verdrängungsreaktion wurde von uns exemplarisch an dem mit Tetramethylethylendiamin stabilisierten Komplex 4a untersucht; der Ligandenaustausch gelang hier nicht nur mit den Chelatphosphanen dppe und dcpe, sondern auch mit Trimethylphosphan. Die durch direkte Synthese nicht oder nur schwer zugänglichen phosphanstabilisierten Nickelacyclobutabenzole 5a-c lassen sich auf diesem Weg in Ausbeuten von 67-83% darstellen.

NMR-Spektren

Die Kernresonanzspektren der Komplexe 4a-d und 5a-c sind mit der angegebenen Nickelacyclobutabenzol-Struktur vereinbar⁹ (Tab. 1 und Tab. 2).

In den ¹H-NMR-Spektren erkennt man die inäquivalenten, aromatischen Protonen (2-H bis 5-H) als ABCD-System; die Protonen der Trimethylsilylgruppen erscheinen als Singuletts um $\delta = -0.2$ bis + 0.3. In 4c stellt sich bei 193 K

Tab. 1. ¹H-NMR-Daten des Nickelacyclobutabenzol-Teils (200 MHz^a), [D₈]THF, δ in ppm, bezogen auf TMS)

Verb.	Ligand	Meßtemp. [°C]	2-H	3-Н	4-H	5-H	9/10-H
4a	TMEDA	-80	6.92 d	6.23 t	6.56 t	6.09 d	0.23 s
4b	TEEDA	-50	6.88 d	6.19 t	6.57 t	6.13 d	0.21 s
4c	PMDTA	80	6.82 d	6.22 t	6.57 t	6.11 d	0.20/0.29 s
4d	bipy	27	7.45 dd	6.46 dt	6.72 dt	6.31 dd	0.18 s
5a	2 PMe ₃	-80	7.00 b	6.46 dt	6.84 t	6.24 d	0.07 s
5b	dcpe	-80	7.07 b	6.40 t	6.67 t	6.32 d	0.10 s
5c	dppe	27	6.36 m	6.13 ddt	6.65 ddt	6.37 m	-0.14 s

^{a)} 5c 400 MHz.

Weitere Signale: $4\mathbf{a}: \delta_{H} = 2.4 - 2.8$ (TMEDA). $4\mathbf{b}: \delta_{H} = 1.08$, 1.45 (t; NCH₂CH₃), 2.8 - 3.6 (m; NCH₂CH₃), 2.29, 2.47 (m; NCH₂CH₂N). $4\mathbf{c}: \delta_{H} = 2.29$, 2.38, 2.91, 3.00 (s; NCH₃), 2.4 - 3.0 (m; NCH₂). $4\mathbf{d}: \delta_{H} = 7.5 - 9.3$ (bipy). $5\mathbf{a}: \delta_{H} = 1.40$, 1.45 (PCH₃, J(PH) = 6.5, 7.6 Hz). $5\mathbf{b}: \delta_{H} = 1.2 - 2.6$ (dcpe). $5\mathbf{c}: \delta_{H} = 1.70$, 2.29 (m; PCH₂), 7.4, 7.9 (m; Ph). Typische Kopplungen: $4\mathbf{d}: J(2,3) = 6.8$, J(3,4) = 7.5, J(4,5) = 7.3, J(2,4) = 1.3, J(3,5) = 1.2, J(2,5) = 0.8 Hz. $5\mathbf{c}: J(3,\mathbf{P}) = 2.7$, $J(4,\mathbf{P}) = 0.8$, $\Sigma J(2,\mathbf{P}) \approx 3$ Hz.

Tab. 2. ¹³C-NMR-Daten des Nickelacyclobutabenzol-Teils (75.5 MHz, [D₈]THF, 38 °C^a), δ in ppm, bezogen auf TMS, J(C,H)-Multiplizitäten, |J(P,C)| in Hz^b)

Ligand	4a TMEDA	4b Teeda	4c PMDTA	4d bipy	5a 2 PMe ₃	5b dcpe	5c dppe
C-1	115.47 s	113.81 s	113.78 s	119.02 s	127.34 s	127.47 s	125.29 s
C-2]	119.56 d	119.66 d	119.91 d	120.44 d	120.40 d	119.92 d	120.61 d
C-3	122.40 d	122.36 d	122.63 d	124.05 d	123.85 d	124.50 d	124.96 d
C-4	125.81 d	125.40 d	125.73 d	125.86 d	128.23 d	127.74 d	126.96 d
C-5	126.37 d	126.23 d	126.50 d	126.13 d	128.23 d	129.94 d	_ c)
C-6	159.82 s	158.91 s	159.50 s	159.62 s	162.71 s	161.59 s	161 96 s
C-7	-17.08 s	-17.26 s	- 16.46 s	-8.67 s	-3.29 s	-168 s	093 s
C-9/10	4.61 q	4.62 q	4.44 q 4.93 q	4.13 q	4.31 q	4.79 q	3.76 q

^{a)} 4a - 30 °C; 4b - 50 °C; 5a - 80 °C. $- \frac{b}{^2}J(P,C-1)$ 5a: 28.5, 78.3; 5b: 27.8, 73.5; 5c: 21.9, 74.3. $^2J(P,C-7)$ 5a: 9.7, 43.2; 5b: 8.4, 46.5; 5c: 6.9, 44.5. $- \frac{c}{^3}$ Signal überlagert.

Weitere Signale: $4a: \delta_C = 48.73$, 50.17 (q; NCH₃), 59.88, 60.06 (t; NCH₂). $4b: \delta_C = 10.9$ (q; NCH₂CH₃), 46.23, 48.22 (t; NCH₂CH₂N), 51.6 (t; NCH₂CH₃). $4c: \delta_C = 45.76$, 46.02, 48.78, 52.54 (q; NCH₃), 57.47, 58.89, 60.18, 60.95 (t; NCH₂). $4d: \delta_C = 121.54$, 121.92, 125.89, 126.96, 137.57, 138.04 (d; bipy), 152.49, 153.78 (d; NCH), 154.39, 155.04 (s; NC). **5a**: $\delta_C = 18.22$, 18.33 (PCH₃). **5b**: $\delta_C = 17.95$, 20.08 (t; PCH₂), 37.10, 37.29 (d; PCH), 27.10, 27.19, 28.27, 28.30, 28.32, 28.48, 30.16, 30.68, 31.72, 32.95 (t; Cyclohexyl). **5c**: $\delta_C = 26.92$, 32.73 (t; PCH₂), 129.08, 129.20, 131.04, 131.18, 134.47, 135.27 (d; Ph), 133.79, 134.87 (s; PC).

für den Chelatliganden eine Vorzugskonformation ein, und infolge der Chiralität des Nickelatoms sind die Protonen der beiden Trimethylsilylgruppen inäquivalent ($\delta = 0.20$ und 0.29). In den ³¹P-NMR-Spektren von **5a-c** werden jeweils die Aufspaltungsmuster von AX-Spinsystemen beobachtet. In den ¹³C-NMR-Spektren erscheinen die Signale der an Nickel gebundenen bistrimethylsilylierten C-Atome C-7 bei hohem Feld ($\delta = 1$ bis -17). Aus den unterschiedlichen Beträgen der P, C-1- und P, C-7-Kopplungskonstanten in 5a-c (Tab. 2) kann auf eine quasi quadratisch-planare Konfiguration am Nickelatom geschlossen werden, was wie später gezeigt werden wird – für 4a anhand einer Röntgenstrukturanalyse bestätigt wird. Das Kohlenstoffatom C-6 des aromatischen Restes tritt bei auffallend tiefem Feld $(\delta = 159 - 163)$ in Resonanz. In 4c wird – wie schon im ¹H-NMR-Spektrum für die Protonen beobachtet – auch für die Kohlenstoffatome C-9/10 der beiden Trimethylsilylgruppen Inäquivalenz festgestellt ($\delta = 4.44$ und 4.93).

Röntgenstrukturanalyse von 4a

Von der im monoklinen System kristallisierenden Verbindung 4a wurde eine Kristallstrukturanalyse angefertigt (siehe Tab. 3). Abb. 1 veranschaulicht die Struktur eines der beiden Moleküle der asymmetrischen Einheit der Elementarzelle. Ausgewählte Bindungsabstände und Winkel (Mittelwerte) beider unabhängigen und lediglich geringfügig unterschiedlichen Moleküle sind in Tab. 4 zusammengefaßt; Atomkoordinaten und gemittelte Parameter der Temperaturfaktoren finden sich in Tab. 5. Die Nickel-Atome liegen in Verbindung 4a quadratisch-planar koordiniert vor, wobei der TMEDA-Ligand zwei Koordinationsstellen besetzt und die verbleibenden beiden Positionen jeweils mit unterschiedlichen Nickel-Kohlenstoff- σ -Bindungen charakteristischer Länge [Ni – C(sp²): 1.897 Å; Ni – C(sp³): 2.075 Å] belegt sind. Beide unabhängigen Moleküle unterschieden sich le-

Abb. 1. Molekülstruktur von 4a (Mol. 1)

diglich durch die Winkel der Koordinationsebenen am Nikkel-Atom $(N - Ni - N \text{ gegen } C - Ni - C 5.2 \text{ bzw.} 3.1^\circ)$.

Tab. 3. Daten zur Kristallstrukturanalyse von 4a¹²⁾

C_{1v}H₃₈N₂NiSi₂, $M_r = 409.4$ a = 15.156 (3), b = 17.203 (5), c = 18.197 (6) Å, $\beta = 95.14$ (3)°, V = 4725.3 Å³, $d_{calcd} = 1.15$ gcm⁻³, Z = 8, Kristallsystem monoklin, Raumgruppe P2₁/a (Nr. 14), μ (Mo- K_a) = 9.27 cm⁻¹, Wellenlänge $\lambda = 0.71069$ Å, Kristallgröße 0.18 × 0.75 × 0.40 mm, Kristallfarbe rotbraun, Theta-Bereich 1.0 < $\Theta < 27.3^{\circ}$, Meßmethode $\Omega - 2\Theta$, Gemessene Reflexe 9703 $\pm h$, +k, +l, Unabhängige Reflexe 9034, Beobachtete Reflexe 5240 ($l \ge 2\sigma(l)$), Verfeinerte Parameter 433, R = 0.044, $R_w = 0.048$ ($w = 1/\sigma^2$ (F_o)), Restelektronendichte $\varrho = 0.47$ eÅ⁻³, keine Absorptionskorrektur.

Tab. 4. Ausgewählte Bindungsabstände (Å) und Bindungswinkel (°) in 4a (Mittelwerte; Standardabweichungen in Klammern)

Nil	-	NI			2.037(7)
NIL	-	N2			2.06(2)
Nil	-	Cl	.3		2.075(4)
Nil	-	Cl	5		1.897(4)
Sil	-	C1	3		1.870(5)
Si2	-	Cl	3		1.87(2)
C13		C1	4		1.534(5)
C14	-	Cl	5		1.38(1)
Nl	-	Nil	-	N2	84.8(3)
Nl	-	Nil	-	C13	168.8(2)
Nl	-	Nil	-	C15	97.8(2)
N2	-	Nil	-	C13	105.9(3)
N2	-	Nil	-	C15	177(1)
C13	-	Nil	-	C15	71.7(2)
Nil	-	C13	-	Sil	111(1)
Nil		C13	-	Si2	116(2)
Nil	-	C13	-	C14	85.3(3)
siı	-	C13	-	Si2	120.8(9)
Sil	-	C13	-	C14	108(1)
Si2	-	C13	-	C14	109(1)
C13	-	C14	-	ci s	106.0(4)
Nil	-	C15	-		96 9(3)
		U10		014	20.9(2)

Experimenteller Teil

Die Versuche mit Organonickel-Verbindungen wurden unter Argon in sorgfältig getrockneten Apparaturen mit getrockneten Lösungsmitteln ausgeführt. – NMR-Spektren: Bruker AM 200 und Bruker WH 400 (¹H-NMR), Bruker WM 300 (¹³C-NMR), Bruker WP 80 (³¹P-NMR). – IR-Spektren: Nicolet-7199-FT-IR-Spektrometer. – UV-Spektren: Cary-14-Spektrometer. – Massenspektren: Varian MAT 311 A. – Elementaranalyscn: Mikroanalytisches Laboratorium Dornis und Kolbe, Mülheim/Ruhr. – Die Schmelzpunkte wurden in unter Argon abgeschmolzenen Glaskapillaren an einer Schmelzpunktsbestimmungsapparatur Büchi SMP-20 gemessen und sind nicht korrigiert.

7,7-Bis(trimethylsilyl)bicyclo[4.1.0]hepta-1,3,5-trien (2): 15 ml (0.14 mol) 1^{10} werden bei -78 °C in 150 ml Tetrahydrofuran (THF)

Tab. 5. Atomkoordinaten und gemittelte Parameter der Temperaturfaktoren $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j$ für 4a

NI1 $0.3245(1)$ $0.2349(1)$ $0.1564(1)$ $0.$ NI2 $0.2518(1)$ $0.1637(1)$ $0.7161(1)$ $0.$ SI1 $0.4053(1)$ $0.0719(1)$ $0.1038(1)$ $0.$ SI2 $0.2989(1)$ $0.0684(1)$ $0.2496(1)$ $0.$ SI3 $0.1819(1)$ $0.2106(1)$ $0.5467(1)$ $0.$ SI4 $0.2845(1)$ $0.0453(1)$ $0.5765(1)$ $0.$ N1 $0.3136(2)$ $0.3506(2)$ $0.1326(2)$ $0.$ N2 $0.4297(2)$ $0.2675(2)$ $0.2285(2)$ $0.$ N4 $0.3745(2)$ $0.2172(2)$ $0.7148(2)$ $0.$ C1 $0.3598(3)$ $-0.099(3)$ $0.0439(3)$ $0.$ C2 $0.5040(3)$ $0.0267(3)$ $0.1571(3)$ $0.$ C3 $0.4452(3)$ $0.1458(3)$ $0.0387(3)$ $0.$ C4 $0.2624(4)$ $-0.0351(3)$ $0.2368(4)$ $0.$ C5 $0.3934(3)$ $0.3921(3)$ $0.3237(3)$ $0.$ C6 $0.2065(3)$ $0.3441(3)$ $0.1995(3)$ $0.$ C7 $0.3812(3)$ $0.3441(3)$ $0.1995(3)$ $0.$ C10 $0.2256(3)$ $0.3441(3)$ $0.1995(3)$ $0.$ C11 $0.5082(3)$ $0.2787(3)$ $0.3006(3)$ $0.$ C12 $0.3967(4)$ $0.2787(3)$ $0.3006(3)$ $0.$ C13 $0.3205(2)$ $0.1143(2)$ $0.1610(2)$ $0.$ C14 $0.2341(2)$ $0.2243(3)$ $0.0426(2)$ $0.$ C15 $0.2248(2)$ $0.2001(2)$ $0.070(3)$ </th <th>ATOM</th> <th>х</th> <th>Y</th> <th>Z</th> <th>U eq</th>	ATOM	х	Y	Z	U eq
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NT1	0.3245(1)	0.2349(1)	0.1564(1)	0.035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NT2	0.2518(1)	0.1637(1)	0.7161(1)	0.039
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SII	0.4053(1)	0.0719(1)	0.1038(1)	0.045
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SI2	0.2989(1)	0.0684(1)	0.2498(1)	0.052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI3	0.1819(1)	0.2106(1)	0.5467(1)	0.058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI4	0.2845(1)	0.0453(1)	0.5765(1)	0.060
N2 $0.4297(2)$ $0.2675(2)$ $0.2285(2)$ $0.3385(2)$ N3 $0.2614(2)$ $0.1949(2)$ $0.8241(2)$ $0.8241(2)$ $0.8241(2)$ $0.8241(2)$ $0.8241(2)$ $0.8241(2)$ $0.63241(2)$ $0.63241(2)$ $0.63241(2)$ $0.6329(3)$ $0.0439(3)$ $0.6329(3)$ $0.0439(3)$ $0.6329(3)$ $0.0439(3)$ $0.6329(3)$ $0.0327(3)$ $0.0267(3)$ $0.01439(3)$ $0.0267(3)$ $0.0237(3)$ $0.02368(4)$ $0.0.6329(3)$ $0.0237(3)$ $0.02368(4)$ $0.0.6531(3)$ $0.2368(4)$ $0.0.6531(3)$ $0.2368(4)$ $0.0.6531(3)$ $0.2368(4)$ $0.0.6531(3)$ $0.3237(3)$ $0.6663(3)$ $0.03237(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0663(3)$ $0.0666(3)$ $0.0429(3)$ $0.0170(3)$ $0.62248(2)$ $0.02243(3)$ $0.0422(2)$ $0.0622(3)$ $0.6603(3)$ $0.0224(3)$ $0.0605(3)$ $0.0256(3)$ $0.0256(3)$ $0.0256(3)$ $0.0256(3)$ $0.0256(3)$ $0.0256(3)$ $0.0256(3)$	NI	0.3136(2)	0.3506(2)	0.1326(2)	0.052
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.4297(2)	0.2675(2)	0.2285(2)	0.050
N4 $0.3745(2)$ $0.2172(2)$ $0.7148(2)$ $0.748(2)$ C1 $0.3598(3)$ $-0.0099(3)$ $0.0439(3)$ $0.627(3)$ $0.1571(3)$ $0.627(3)$ C2 $0.5040(3)$ $0.0267(3)$ $0.1571(3)$ $0.627(3)$ $0.1571(3)$ $0.627(3)$ C3 $0.4452(3)$ $0.1458(3)$ $0.0387(3)$ $0.627(3)$ $0.627(3)$ $0.627(3)$ C4 $0.2624(4)$ $-0.0351(3)$ $0.2368(4)$ $0.627(3)$ $0.627(3)$ $0.627(3)$ C5 $0.3934(3)$ $0.0591(3)$ $0.3237(3)$ $0.627(3)$ $0.627(3)$ C6 $0.2065(3)$ $0.1214(3)$ $0.2900(3)$ $0.627(3)$ C7 $0.3812(3)$ $0.3441(3)$ $0.1995(3)$ $0.629(3)$ C9 $0.3304(3)$ $0.3605(3)$ $0.0549(3)$ $0.6212(3)$ C10 $0.2256(3)$ $0.3843(3)$ $0.1449(3)$ $0.6212(3)$ C11 $0.5082(3)$ $0.2787(3)$ $0.3006(3)$ $0.6213(3)$ C12 $0.396(2)$ $0.2787(3)$ $0.3006(3)$ $0.6215(3)$ $0.6215(3)$ C13 $0.3205(2)$ $0.1143(2)$ $0.1610(2)$ $0.6215(3)$ $0.6215(3)$ C14 $0.2341(2)$ $0.2243(3)$ $0.0452(2)$ $0.6215(3)$ $0.6215(3)$ $0.6225(3)$ C16 $0.1521(3)$ $0.22243(3)$ $0.0452(2)$ $0.6215(3)$ $0.6225(3)$ $0.6215(3)$ C16 $0.1521(3)$ $0.2979(3)$ $0.6015(3)$ $0.6225(3)$ $0.6215(3)$ $0.6225(3)$ C17 $0.9912(3)$ $0.1629(3)$ $0.6215(3)$ $0.6225(3)$ $0.$	N3	0.2614(2)	0.1949(2)	0.8241(2)	0.051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	0.3745(2)	0.2172(2)	0.7148(2)	0.050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.3598(3)	-0.0099(3)	0.0439(3)	0.079
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.5040(3)	0.0267(3)	0.1571(3)	0.065
$\begin{array}{cccccc} C4 & 0.2624(4) & -0.0351(3) & 0.2368(4) & 0.0591(3) & 0.3237(3) & 0.0591(3) & 0.3237(3) & 0.0591(3) & 0.3237(3) & 0.0591(3) & 0.3237(3) & 0.0560(3) & 0.0560(3) & 0.0560(3) & 0.0560(3) & 0.0560(3) & 0.0549(3) & 0.0560(3) & 0.0549(3) & 0.0560(3) & 0.0549(3) & 0.0560(3) & 0.0549(3) & 0.0560(3) & 0.0525(3) & 0.0560(3) & 0.0660(3) & 0.0625(3) & 0.0525(3) & 0.0560(3) & 0.0625(3) & 0.0525(3) & 0.0560(3) & 0.02255(3) & 0.0560(3) & 0.02255(3) & 0.0560(3) & 0.02255(3) & 0.0560(3) & 0.02555(3) & 0.0560(3) & 0.0825(3) & 0.0560(3) & 0.02555(3) & 0.0560(3) & 0.08450(3) & 0.02250(3) & 0.02555(3) & 0.2505(3) & 0.07766(3) & 0.07766(3) & 0.02555(3) & 0.2505(3) & 0.07766(3) & 0.07318(3) & 0.0530(3) & 0.2505(3) & 0.07766(3) & 0.07318(3) & 0.0530(3) & 0.2505(3) & 0.07766(3) & 0.07318(3) & 0.0535(2) & 0.6490(3) & 0.0535(3) & 0.0535(3) & 0.02555(3) & 0.1289(3) & 0.8346(3) & 0.0530(3) & 0.2505(3) & 0.12595(3) & 0.7318(3) & 0.0530(3) & 0.2505(3) & 0.7318(3) & 0.0530(3) & 0.2505(3) & 0.7318(3) & 0.0530(3) & 0.2505(3) & 0.7318(3) & 0.0530(3) & 0.2505(3) & 0.07318(3) & 0.0530(3) & 0.07560(3) & 0.07310(3) & 0.0888(3) & 0.7560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.07310(3) & 0.0888(3) & 0.7560(3) & 0.0530(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0530(3) & 0.0276(3) & 0.07560(3) & 0.0730(3) & 0.0276(3) & 0.07560(3) & 0.0730(3) & 0.0276(3) & 0.07560(3) & 0.0730(3) & 0.0276(3) & 0.07560(3) & 0.0730(3) & 0.07560(3) & 0.07560(3) & 0.07560(3) & 0.07560(3) $	C3	0.4452(3)	0.1458(3)	0.0387(3)	0.061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.2624(4)	-0.0351(3)	0.2368(4)	0.092
$\begin{array}{cccccc} C6 & 0.2065(3) & 0.1214(3) & 0.2900(3) & 0.\\ C7 & 0.3812(3) & 0.3942(3) & 0.1800(3) & 0.\\ C8 & 0.4589(3) & 0.3441(3) & 0.1995(3) & 0.\\ C9 & 0.3304(3) & 0.3605(3) & 0.0549(3) & 0.\\ C10 & 0.2256(3) & 0.3843(3) & 0.1449(3) & 0.\\ C11 & 0.5082(3) & 0.2168(3) & 0.2369(3) & 0.\\ C12 & 0.3967(4) & 0.2787(3) & 0.3006(3) & 0.\\ C13 & 0.3205(2) & 0.1143(2) & 0.1610(2) & 0.\\ C14 & 0.2341(2) & 0.1215(2) & 0.1109(2) & 0.\\ C15 & 0.2248(2) & 0.2001(2) & 0.0946(2) & 0.\\ C16 & 0.1521(3) & 0.2243(3) & 0.0462(2) & 0.\\ C17 & 0.0912(3) & 0.1699(3) & 0.0170(3) & 0.\\ C18 & 0.1003(3) & 0.0932(3) & 0.0354(3) & 0.\\ C19 & 0.1718(3) & 0.0668(3) & 0.0825(3) & 0.\\ C21 & 0.6805(4) & 0.1888(3) & 0.4833(3) & 0.\\ C22 & 0.2638(4) & 0.2422(3) & 0.4808(3) & 0.\\ C24 & 0.2271(4) & -0.0067(3) & 0.4952(3) & 0.\\ C25 & 0.3954(4) & 0.0696(3) & 0.5435(3) & 0.\\ C26 & 0.3041(4) & -0.282(3) & 0.6513(3) & 0.\\ C27 & 0.3464(3) & 0.2776(3) & 0.7766(3) & 0.\\ C31 & 0.3958(3) & 0.2505(3) & 0.8346(3) & 0.\\ C23 & 0.1503(3) & 0.2736(3) & 0.7766(3) & 0.\\ C31 & 0.3958(3) & 0.2595(3) & 0.6430(3) & 0.\\ C31 & 0.3958(3) & 0.2595(3) & 0.6430(3) & 0.\\ C33 & 0.2166(3) & 0.1289(3) & 0.8764(3) & 0.\\ C34 & 0.1343(3) & 0.0935(2) & 0.6400(3) & 0.\\ C35 & 0.1409(3) & 0.1125(2) & 0.7138(3) & 0.\\ C37 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C34 & 0.1343(3) & 0.0935(2) & 0.6401(3) & 0.\\ C35 & 0.1409(3) & 0.1125(2) & 0.7136(3) & 0.\\ C37 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C38 & 0.0731(3) & 0.0888(3) & 0.7560(3) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0.\\ C39 & 0.0020(3) & 0.04$	C5	0.3934(3)	0.0591(3)	0.3237(3)	0.081
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.2065(3)	0.1214(3)	0.2900(3)	0.077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	0.3812(3)	0.3942(3)	0.1800(3)	0.077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.4589(3)	0.3441(3)	0.1995(3)	0.073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.3304(3)	0.3605(3)	0.0549(3)	0.069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.2256(3)	0.3843(3)	0.1449(3)	0.070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.5082(3)	0.2168(3)	0.2369 (3)	0.064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.3967(4)	0.2787(3)	0.3006(3)	0.081
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.3205(2)	0.1143(2)	0.1610(2)	0.036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.2341(2)	0.1215(2)	0.1109(2)	0.038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.2248(2)	0.2001(2)	0.0946(2)	0.039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.1521(3)	0.2243(3)	0.0462(2)	0.048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.0912(3)	0.1699(3)	0.0170(3)	0.060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.1003(3)	0.0932(3)	0.0354(3)	0.066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.1718(3)	0.0668(3)	0.0825(3)	0.058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.0805(4)	0.1888(3)	0.4833(3)	0.089
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.2638(4)	0.2422(3)	0.4808(3)	0.083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	0.1503(3)	0.2979(3)	0.6015(3)	0.072
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	0.2271(4)	-0.0067(3)	0.4952(3)	0.095
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	0.3954(4)	0.0696(3)	0.5435(3)	0.087
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	0.3041(4)	-0.0282(3)	0.6513(3)	0.088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	0.3464(3)	0.2357(3)	0.8438(3)	0.070
$\begin{array}{ccccccc} C29 & 0.1882(3) & 0.2501(3) & 0.8346(3) & 0 \\ C30 & 0.2555(3) & 0.1289(3) & 0.8764(3) & 0 \\ C31 & 0.3958(3) & 0.2595(3) & 0.6490(3) & 0 \\ C32 & 0.4424(3) & 0.1575(3) & 0.7318(3) & 0 \\ C33 & 0.2166(3) & 0.1277(3) & 0.6088(2) & 0 \\ C34 & 0.1343(3) & 0.0935(2) & 0.6401(3) & 0 \\ C35 & 0.1409(3) & 0.1125(2) & 0.7136(3) & 0 \\ C36 & 0.0731(3) & 0.0888(3) & 0.7560(3) & 0 \\ C37 & 0.0020(3) & 0.0460(3) & 0.7232(4) & 0 \\ C38 & 0.0731(3) & 0.0937(2) & 0.6737(3) & 0 \\ C38 & 0.0731(3) & 0.0938(3) & 0.7232(4) & 0 \\ C38 & 0.0731(3) & 0.0937(3)$	C28	0.3763(3)	0.2736(3)	0.7766(3)	0.065
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	0.1882(3)	0.2501(3)	0.8346(3)	0.067
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	0.2555(3)	0.1289(3)	0.8764(3)	0.064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.3958(3)	0.2595(3)	0.6490(3)	0.071
C33 0.2166(3) 0.1277(3) 0.6088(2) 0 C34 0.1343(3) 0.0935(2) 0.6401(3) 0 C35 0.1409(3) 0.1125(2) 0.7136(3) 0 C36 0.0731(3) 0.0888(3) 0.7560(3) 0 C37 0.0020(3) 0.0460(3) 0.7232(4) 0	C32	0.4424(3)	0.1575(3)	0.7318(3)	0.073
C34 0.1343 (3) 0.0935 (2) 0.6401 (3) 0 C35 0.1409 (3) 0.1125 (2) 0.7136 (3) 0 C36 0.0731 (3) 0.0888 (3) 0.7550 (3) 0 C37 0.0020 (3) 0.0460 (3) 0.7232 (4) 0 C38 0.0731 (2) 0.0475 (2) 0.7232 (4) 0	C33	0.2166(3)	0.1277(3)	0.6088(2)	0.045
C35 U.1409(3) 0.1125(2) 0.7136(3) 0 C36 0.0731(3) 0.0888(3) 0.7560(3) 0 C37 0.0020(3) 0.0460(3) 0.7232(4) 0 C38 0.023(2) 0.0273(2) 0.67232(4) 0	C34	0.1343(3)	0.0935(2)	0.6401(3)	0.048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35	0.1409(3)	0.1125(2)	0.7136(3)	0.041
(37) $(0.0020(3))$ $(0.0460(3))$ $(0.7232(4))$ $(0.0272(3))$	C36	0.0731(3)	0.0888(3)	0.7560(3)	0.054
	037	0.0020(3)	0.0460(3)	0.7232(4)	0.065
(30 -0.0033(3) 0.02/3(3) 0.6520(4) 0.00000000000000000000000000000000000	038	-0.0033(3)	0.0273(3)	0.6520(4)	0.077

vorgelegt und innerhalb 1 h mit 95 ml n-Butyllithium (1.62 M, 0.15 mol) versetzt. Nach 1stdg. Rühren bei -55°C wird das Reaktionsgemisch auf -78°C abgekühlt und mit 20 ml (0.15 mol) Chlortrimethylsilan versetzt. In die entstandene braune Suspension werden erneut 95 ml n-Butyllithium-Lösung gegeben und nach 1 h Rühren bei $-55\,^\circ C$ bei $-78\,^\circ C$ 20 ml Chlortrimethylsilan. Die nun grüne Suspension wird über Nacht langsam auf Raumtemp. erwärmt, dann vorsichtig mit 60 ml gesättigter Na2CO3-Lösung hydrolysiert und mit weiteren 400 ml Wasser versetzt. Die wäßrige Phase extrahiert man zweimal mit je 100 ml Diethylether. MgSO4-Trocknung und Abziehen des Solvens ergeben einen dunkelgelben zähflüssigen Rückstand, der sofort i. Ölpumpenvak. (Sdp. 42°C/0.15 Torr) destilliert wird. Ausb. 11 g (33%). - ¹H-NMR (400 MHz, CDCl₃, TMS, 27 °C): $\delta = -0.05$ (s; 18H, SiMe₃), AA'BB'-Signal $(\delta_{A} = 6.91, \delta_{B} = 6.85)$. - ¹³C-NMR (75.5 MHz, CDCl₃, TMS, 40 °C): $\delta = -1.2$ (q, J(C,Si) = 52.3 Hz; SiCH₃), 29.4 (s, J(C,Si) = 51.9 Hz; C-7), 111.8 (d; C-2, C-5), 126.4 (d; C-3, C-4), 132.8 (s; C-1, C-6). – IR (KBr): UV (Cyclohcxan): λ_{max} (ϵ) = 284 nm (636), 289 (5018), 292 (4734), 297 (3966). - 1435 cm⁻¹ (C=C), 3055 (=C-H). - MS (70 eV): m/z (%) = 234 (2, M⁺), 191 (2), 161 (5), 146 (26), 145 (21), 73 (100).

7,7-Bis(trimethylsilyl)-8-/(N.N.N'.N'-tetramethylethylendiamin)nickela/bicyclo/4.2.0/octa-1,3,5-trien (4a): Zu einer aus 848 mg (3.65 mmol) CDT-Ni¹¹⁾ hergestellten Tris(ethen)nickel(0)-Lösung $(3)^{7}$ in 30 ml Diethylether werden bei $-78 \degree C 0.61$ ml (4.02 mmol) TMEDA gegeben, danach wird über eine D₄-Fritte filtriert. Das klare Filtrat versetzt man bei -78° C mit 0.98 ml (3.65 mmol) 2. Beim anschließenden Erwärmen auf Raumtemp. schlägt die Farbe von Gelb nach Braun um. Man läßt die Lösung ohne Rühren 4 h bei Raumtemp. stehen, dabei fallen braune Kristalle aus. Zur Vervollständigung der Kristallisation wird 2 d lang auf -78°C gekühlt. Die Kristalle werden von der Mutterlauge befreit und einmal mit kaltem Diethylether gewaschen sowie bei Raumtemp. i. Ölpumpenvak. getrocknet. Ausb. 1.21 g (81%) braune Würfel vom Schmp. 146°C. – ¹H-NMR (200 MHz, [D₈]THF, TMS, –80°C): s. Tab. 1. - ¹³C-NMR (75.5 MHz, [D₈]THF, TMS, -30° C): s. Tab. 2. - IR (KBr): 865 cm⁻¹, 1231 (SiMe₃), 1483, 1561 (C = C), 3006, 3023, 3074 (= C – H). – MS (70 eV): m/z (%) = 408 (9, M⁺), 232 (83), 174 (100), 146 (45), 73 (50).

 $\begin{array}{c} C_{19}H_{38}N_2NiSi_2 \ (409.4) \\ \text{Ber. C 55.74} \ H \ 9.36 \ N \ 6.84 \ Ni \ 14.34 \ Si \ 13.72 \\ \text{Gef. C 55.80} \ H \ 9.24 \ N \ 6.62 \ Ni \ 14.43 \ Si \ 13.61 \end{array}$

7,7-Bis(trimethylsilyl)-8-[(N,N,N',N'-tetraethylethylendiamin)nickela/bicyclo/4.2.0/octa-1,3,5-trien (4b): Zu einer aus 720.2 mg (3.1 mmol) CDT-Ni¹¹ hergestellten Tris(ethen)nickel(0)-Lösung (3)⁷¹ in 25 ml Diethylether werden bei -78°C 0.72 ml (3.4 mmol) TEEDA gegeben, danach wird über eine D₄-Fritte filtriert. Das klare Filtrat versetzt man bei - 78°C mit 0.83 ml (3.1 mmol) 2 und läßt die gelbe Lösung auf Raumtemp, kommen. Nach 0.5 h ist die Farbe nach Braun umgeschlagen. Zur Kristallisation wird langsam auf - 78 °C gekühlt und 3 d bei dieser Temperatur belassen. Der Niederschlag wird von der Mutterlauge befreit, einmal mit kaltem Pentan gewaschen und bei Raumtemp, i. Ölpumpenvak, getrocknet. Ausb. 901 mg (62%) rotbraune Kristalle vom Schmp. 123°C $(Zers.). - {}^{1}H-NMR$ (200 MHz, [D₈]THF, TMS, -50 °C): s. Tab. 1. - ¹³C-NMR (75.5 MHz, [D₈]THF, TMS, -50°C): s. Tab. 2. – IR (KBr): 865 cm⁻¹, 1231 (SiMe₃), 1540, 1562 (C = C), 3010, 3040, 3075 (=C-H). - MS (70 eV): Die Probe zersetzt sich. Es lassen sich TEEDA und $C_7H_6(SiMe_3)_2$ nachweisen.

7,7-Bis(trimethylsilyl)-8-[(N,N,N',N",N"-pentamethyldiethylentriamin)nickela]bicyclo[4.2.0]octa-1,3,5-trien (4c): Zu einer aus 722.5 mg (3.1 mmol) CDT-Ni¹¹ hergestellten Tris(ethen)nickel(0)-Lösung (3)⁷⁾ in 20 ml Diethylether werden bei -78 °C 0.75 ml (3.4 mmol) PMDTA gegeben, danach wird über eine D4-Fritte filtriert. Das klare Filtrat versetzt man bei -78°C mit 0.83 ml (3.1 mmol) 2 und läßt die gelbe Lösung auf Raumtemp. kommen. Nach 0.5 h ist die Farbe nach Braun umgeschlagen. Zur Kristallisation wird langsam auf -78°C gekühlt und 3 d bei dieser Temperatur belassen. Der Niederschlag wird von der Mutterlauge befreit, einmal mit kaltem Pentan gewaschen und bei Raumtemp. i. Hochvak. getrocknet. Ausb. 1.08 g (75%) braune Kristalle vom Schmp. 144°C $(Zers.) - {}^{1}H-NMR (200 MHz, [D_8]THF, TMS, -80^{\circ}C)$: s. Tab. 1. – ¹³C-NMR (75.5 MHz, [D₈]THF, TMS, 38°C): s. Tab. 2. - IR (KBr): 868 cm⁻¹, 1230 (SiMe₃), 1540, 1563 (C=C), 3000, 3020, 3030, 3040, 3080 (= C - H). - MS (70 eV): m/z (%) = 465 (27, M⁺), 231 (100), 72 (24).

 $\begin{array}{c} C_{22}H_{45}N_3NiSi_2 \ (466.5) \\ \text{Ber. C } 56.64 \ H \ 9.72 \ N \ 9.01 \ Ni \ 12.59 \ Si \ 12.04 \\ \text{Gef. C } 56.75 \ H \ 9.84 \ N \ 9.12 \ Ni \ 12.46 \ Si \ 11.88 \end{array}$

7,7-Bis(trimethylsilyl)-8-[(2,2'-bipyridyl)nickela]bicyclo-[4.2.0]octa-1,3,5-trien (4d): Zu einer aus 540 mg (2.3 mmol) CDT-Ni¹¹⁾ hergestellten Tris(ethen)nickel(0)-Lösung (3)⁷⁾ in 30 ml Diethylether wird bei -78 °C eine Lösung von 364 mg (2.3 mmol) 2,2'-Bipyridyl in 15 ml Diethylether gegeben, danach wird über eine D₄-Fritte filtriert. Das klare Filtrat versetzt man bei -78 °C mit 0.62 ml (2.3 mmol) 2. Beim anschließenden Erwärmen auf Raumtemp. schlägt die Farbe von Dunkelgrün nach Blauviolett um. Man läßt die Lösung ohne Rühren bei Raumtemp. stehen; dabei fallen dunkelviolette Nadeln aus. Zur Vervollständigung der Kristallisation wird 1 d auf -78°C gekühlt. Die Kristalle werden von der Mutterlauge befreit und einmal mit kaltem Pentan gewaschen sowie bei Raumtemp. i.Ölpumpenvak. getrocknet. Ausb. 626 mg (61%) tiefviolette Nadeln vom Schmp. 187°C. - ¹H-NMR (200 MHz, $[D_8]THF$, TMS, 27°C): s.Tab. 1. – ¹³C-NMR (75.5 MHz, [D₈]THF, TMS, 38°C): s.Tab. 2. - IR (KBr): 863 cm⁻¹, 1230 $(SiMe_3)$, 1550, 1565 (C=C), 3030, 3040, 3080, 3130 (=C-H). -MS (70 eV): m/z (%) = 448 (9, M⁺), 272 (19), 214 (100), 73 (16).

> C23H30N2NiSi2 (449.4) Ber. C 61.47 H 6.73 N 6.23 Ni 13.06 Si 12.50 Gef. C 61.36 H 6.80 N 6.06 Ni 13.29 Si 12.38

7,7-Bis(trimethylsilyl)-8-{bis(trimethylphosphan)nickela]bicyclo[4.2.0]octa-1,3,5-trien (5a): Zu einer Lösung von 2.46 g (6.0 mmol) 4a in 80 ml Diethylether werden bei Raumtemp. unter gutem Rühren 1.28 ml (12.6 mmol) Trimethylphosphan zugetropft. Man läßt die braune Lösung 1 d bei Raumtemp. nachrühren, danach wird auf - 78°C gekühlt. Die ausgefallenen Kristalle werden von der Mutterlauge befreit, einmal mit kaltem Pentan gewaschen und bei Raumtemp. i. Hochvak. getrocknet. Ausb. 2.18 g (82%) rotbraune Kristalle vom Schmp. 90 °C (Zers.). – ¹H-NMR (200 MHz, $[D_8]$ THF, TMS, -80° C): s.Tab. 1. - ¹³C-NMR (75.5 MHz, [D₈]THF, TMS, -80°C): s. Tab. 2. - ³¹P-NMR (32 MHz, $[D_8]$ THF, -80° C): $\delta = -20.3/-13.0$ [dd, J(P,P) = 11.0 Hz]. IR (KBr): 860 cm⁻¹, 1235 (SiMe₃), 1540, 1560 (C=C), 3030, 3040, 3080 (=C-H). - MS (70 eV): Die Probe zersetzt sich.

> $C_{19}H_{40}NiP_2Si_2$ (445.4) Ber. C 51.24 H 9.05 Ni 13.18 P 13.91 Si 12.61 Gef. C 51.17 H 9.10 Ni 13.24 P 13.82 Si 12.55

7,7-Bis(trimethylsilyl)-8-[[1,2-bis(dicyclohexylphosphino)ethan / nickela / bicyclo [4.2.0] octa-1,3,5-trien (5b): Zu einer Lösung von 583.2 mg (1.42 mmol) 4a in 20 ml Diethylether wird bei Raumtemp. unter gutem Rühren eine Lösung von 601.1 mg (1.42 mmol) dcpe in 30 ml Diethylether gegeben. Die rotbraune Reaktionsmischung wird 1 d bei Raumtemp. gerührt und anschließend über eine D₄-Fritte abfiltriert. Beim Kühlen auf - 78°C fällt ein ockerfarbener Niederschlag aus. Die Kristalle werden von der Mutterlauge befreit und einmal mit kaltem Pentan gewaschen, danach bei Raumtemp. i. Hochvak. getrocknet. Ausb. 677.6 mg (67%) ockerfarbene Kristalle vom Schmp. 190 °C (Zers.). - ¹H-NMR (200 MHz, [D₈]THF, TMS, -80° C): s. Tab. 1. $-^{13}$ C-NMR (75.5 MHz, [D₈]THF, TMS, 38°C): s. Tab. 2. $-{}^{31}$ P-NMR (32 MHz, [D₈]THF, 37°C): $\delta = 51.1/$ $64.2 [J(P,P) = 6.4 \text{ Hz}]. - IR (KBr): 870 \text{ cm}^{-1}, 1230 (SiMe_3), 1540,$ 1560 (C=C), 3030, 3080 (=C-H). - MS (70 eV): m/z (%) = 714 $(2, M^+), 699 (4, M^+ - CH_3), 632 (2), 538 (47), 480 (100), 398 (62),$ 339 (31), 316 (62), 234 (57), 146 (36), 73 (66).

> $C_{39}H_{70}NiP_2Si_2$ (715.8) Ber. C 65.44 H 9.86 Ni 8.20 P 8.65 Si 7.85 Gef. C 65.38 H 9.90 Ni 8.28 P 8.54 Si 7.76

7,7-Bis(trimethylsilyl)-8-[[1,2-bis(diphenylphosphino)ethan]nickela]bicyclo[4.2.0]octa-1,3,5-trien (5c): Zu einer Lösung von 538.1 mg (1.31 mmol) 4a in 20 ml Diethylether wird bei Raumtemp. unter gutem Rühren eine Suspension von 538.2 mg (1.35 mmol) dppe in 40 ml Diethylether gegeben. Nach 0.5 h schlägt die braune Farbe nach Orange um. Es wird 1 d bei Raumtemp. nachgerührt, danach auf -78°C gekühlt. Der ausgefallene Niederschlag wird über eine D₄-Fritte abfiltriert, mit kaltem Pentan gewaschen und bei Raumtemp. i. Ölpumpenvak. getrocknet. Ausb. 750 mg (83%) gelbe Kristalle vom Schmp. 223 °C (Zers.). – ¹H-NMR (400 MHz, $[D_8]$ THF, TMS, 27°C): s.Tab. 1. – ¹³C-NMR (75.5 MHz, $[D_8]$ THF, TMS, 38 °C): s. Tab. 2. $-^{31}$ P-NMR (32 MHz, $[D_8]$ THF, 37° C): $\delta = 39.4/48.8 \, [dd, J(P,P) = 16.5 \, Hz]. - IR (KBr): 870$ cm^{-1} , 1240 (SiMe₃), 1540, 1565 (C=C), 3040, 3060, 3080 (=C-H). - MS (70 eV): m/z (%) = 690 (3, M⁺), 675 (1, M⁺ -CH₃), 514 (63), 456 (40), 428 (62), 398 (17), 289 (32), 262 (38), 183 (100), 146 (57), 73 (98).

> $C_{39}H_{46}NiP_2Si_2$ (691.6) Ber. C 67.73 H 6.70 Ni 8.49 P 8.96 Si 8.12 Gef. C 67.59 H 6.81 Ni 8.64 P 8.85 Si 8.19

CAS-Registry-Nummern

1: 4646-69-9 / 2: 103322-20-9 / 3: 50696-82-7 / 4a: 106250-13-9 / 4b: 106232-49-9 / 4c: 106232-50-2 / 4d: 106232-51-3 / 5a: 106232-48-8 / 5b: 106232-52-4 / 5c: 106232-53-5

- ¹⁾ R. H. Grubbs, Prog. Inorg. Chem. 24 (1978) 1; Comprehensive Organometallic Chemistry, Vol. 8, S. 499, und dort zit. Lit., Per-
- gamon Press, 1982. ²⁾ R. Mynott, R. Neidlein, H. Schwager, G. Wilke, Angew. Chem. 98 (1986) 374; Angew. Chem. Int. Ed. Engl. 25 (1986) 367; H. Schwager, R. Neidlein, G. Wilke, Deutsch-Österr. Chemikertreffen 1986, Vortragsband S. 68.
- ³⁾ H. Schwager, Dissertation, Ruhr-Univ. Bochum, 1986.
- 4) T. H. Tulip, D. L. Thorn, J. Am. Chem. Soc. 103 (1981) 2448; L. Dahlenburg, V. Sinnwell, D. Thoennes, Chem. Ber. 111 (1978) 3367; V. F. Traven, M. Yu. Eismont, V. V. Redchenko, B. I. Stepanov, Zh. Obshch. Khim. 50 (1980) 2007 [Chem. Abstr. 94 (1981) 296812]; T. Behling, G. S. Girolami, G. Wilkinson, R. G. Somerville, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1984, 877; J. A. Statler, G. Wilkinson, M. Thornton-Pett, M. B. Hursthouse, ibid. 1984, 1731; H. J. R. de Boer, O. S. Akkerman, F. Bickelhaupt, G. Erker, P. Czisch, R. Mynott, J. M. Wallis, C. Krüger, Angew. Chem. 98 (1986) 641; Angew. Chem. Int. Ed. Engl. 25 (1986) Nr. 7.
- ⁵⁾ R. Neidlein, A. Rufińska, H. Schwager, G. Wilke, Angew. Chem. 98 (1986) 643; Angew. Chem. Int. Ed. Engl. 25 (1986) Nr. 7. ⁶⁾ C. Eaborn, R. Eidenschink, S. J. Harris, D. R. M. Walton, J.
- Organomet, Chem. 124 (1977) C 27.
- ¹⁾ K. Fischer, K. Jonas, G. Wilke, Angew. Chem. 85 (1973) 620; Angew. Chem. Int. Ed. Engl. 12 (1973) 525.
- ⁸⁾ T. Kohara, T. Yamamoto, A. Yamamoto, J. Organomet. Chem. 192 (1980) 265.
- ⁹⁾ NMR-Datensammlung, NMR-Labor, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim-Ruhr.
- ¹⁰⁾ W. E. Billups, A. J. Blakeney, W. Y. Chow, Org. Synth. 55 (1976) 12
- ¹¹⁾ B. Bogdanović, M. Kröner, G. Wilke, Liebigs Ann. Chem. 699 (1966) 1.
- ¹²⁾ Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52056, des Autors und des Zeitschriftenzitats angefordert werden.

[175/86]